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PREFACE

This is the first part of a two-part report that describes research

initiated at Rand in mid-1975 under the Project RAND research project

"Target Acquisition." The subject Is "map matching" or image corre-

lation to achieve autonomous target acquisition and terminal guidance

for missiles (both strategic and tactical), with particular emphasis

on the acquisition phase.

Part I presents an analysis of the probabilities of correct and

"false acquisitions, extends it to include the effects of a number of

common error sources, and describes computer simulations based on data

samples from real scenes. Part II provides a more general and more

rigorous analytical approach. Some of the conclusions derive Jointly

from both phases of the study, but Part II is published separately

"because it is addressed to readers with a theoretical and mathematical

interest in the subject.

Both reports should be of interest to defense and industrial proj-

Oct managers and engineers involved in the development of missile guid-

ance, particularly those concerned with current or future correlator

"programs.

if. W. Wessely, Imciet. eoivlation, Parwt .I: Thaoivtidal '" oia,
The Rand Corporation, R-2057/2-PR, November 1976.
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"SUMMARY

Image correlation or "map matching" makes possible a type of weapon

guidance that provides autonomous target acquisition and tracking. This

study analyzes the image correlation process, both theoretically and by

using computerized simulations; primary emphasis is on the often ne-

glected but crucial acquisition phase. (The requirement for achieving

adequate terminal tracking accuracy in weapon delivery has been and is

being studied extensively elsewhere and, for this report, is considered

to be of secondary importance; it is simply assumed that, if necessary,

"operational systems could accommodate a software change to maximize

tracking accuracy after the initial acquisition has been accomplished.)

The essential step in image correlation guidance is to find the

position of "best fit" between two similar but nonidentical images or
"maps": a acnaor image of the terrain surrounding a desired target,

obtained in real time as the weapon approaches, and a previously pre-

pared Po ranae image of roughly the same area. The match point is

found by systematically displacing one map relative to the other and

computing, for each of the many possible displacements, the value of a

comparison function or "metric" that, ideally, has an extremum (max or

win) value at the match point. The particular displacement, suitably

scaled, that produces the extremum becomes the correction signal for

the guidance system.

Unfortunately, precisely because the two maps are not identical--

owing to detector noise, real changes in the scene, geometrical dis-

tortions, and several other causes that are discussed in this report--

the displacement that produces the extremum does not ah1Lq/a correspond

to the correct match point. It only does so On the aVoI'av. Accord-

ingly, this analysis focuses on tvo topics of principal concern:

(a) the probability of achieving a correct match (conversely, the prob-

ability of a "false lock" or, In military terms, a gross error) and

(b) the selection of an appropriate comparison metric to maximize (a).

'The probability of achieving a correct match, Pc, can be analyzed

in a vtraight.forward manner if one is willing to make several simplifyingu
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but unrealistic assumptions. The unrealism comes in attempting to

describe terrain--particularly terrain that has been modified by man--

using only Gaussian statistics. The results of such an analysis are

qualitatively correct, but quantitatively they tend to be pessimistic

(as our analysis shows). Nevertheless, we use this approach in the

first portion of this report, followed by a description of some simu-

lations using real scene data. In Part II, a broader perspective on

the map-matching problem is undertaken and some important insights are

derived.

In the simple Gaussian approach developed in Section II, two com-

monly used comparison metrics are calculated by using the so-called

Product (a sum of products that is related to classical correlation)

and MAD (mean absolute difference) algorithms, respectively. It is

shown that in all cases P increases with the size of the data sampleC

and with the elemental signal-to-noise ratio (S/N), and decreases

(slowly) with increasing search area. It is also shown that at low

S/N, the Product algorithm is the preferred one (i.e., it leads to

higher probabilities of correct lock), but at high S/N the MAD algo-

rithm is preferred.

In Section III, the same methods are extended to include the effects

of a number of commonly encountered systematic error sources. Geomet-

rical errors include synchronization (an effect peculiar to digital

systems in which the picture elements of the two maps are staggered by

some unknown fraction of a picture element), rotation, and scale factor

(magnification). These all ihave the effect of reducing the peak value

of P and increasing the width of that function; i.e., they both increase

the chances of a false lock and decrease the tracking accuracy. If ro-

tation and scale are controlled, as they usually can be in practice, such

that nO : I and n(p - 1):: .1, then performance is not seriously degraded.

Here n is the number of independent samples across the (smaller) 6iensor

map, 0 is the rotation in radians, and p .is the magnification. The

synchronizatiou error, however, is inherently uncontrollable and, in the

R-2057/2-PR, Imlwja on'elation 1 kkot 11: Th4 '.aioul lkwiO (see
Ref. 1).
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case of uncorrelated data, can have roughly the same effect as reduc-

4 ing any S/N to less than unity. Several kinds of systematic intensity

errors can also occur in practice. Generally these primarily affect

the peak value of P . A simple uniform reduction in signal level (duec

to an erroneous gain setting, for example) is shown to be quite serious

for the MAD algorithm, but the Product algorithm is unaffected. Other

and more complex intensity errors are treated in Section IV. The

principal conclusion is that real systems suffer from a number of errors

that, loosely speaking, lower the effective value of S/N, so that the

higher values which, according to Section II, would render the MAD or

similar algorithms attractive are seldom realized in practice.

Some tests of the foregoing theory are described in Section IV.

These tests were carried out by means of computer simulations of the

map-matching process using some digitized samples of data taken from

real scenes. Four scenes, differing in both visual "texture" and auto-

correlation length, were selected out of a large available data base to

represent different types of terrain. They are crudely categorized as

agricultural, mountain, desert, and suburban. The most extensive simu-

lations involved adding Gaussian noise to patches lifted out of each

scene, and then comparing the so-modified "sensor" map with the original

or "reference" map, using both the Product and the MAD metrics. Doth

algorithms consistently performed significantly better (i.e., had higher

P ) when operating on these real data than was predicted by the theoryC

developed in Section II. This phenomenon is probably due to the fact

that (a) the scenes are non-Caussian, whereas the theory specifically

postulated Gaussian statistics, and (b) the very features and structure

that modify the statistics render the scenes "more unique," with proper-

ties that the comparison metrics are able to exploit.

"Simulations were also carried out with synchronization, scale fac-

tor, rotation, and "gain" errors introduced on the same samples of real

scene data; these results were consistent with the theory. In addition,

a few experiments were conducted in ,hich substantial blocks of the

sensor scene were altered drastically to simulate the effects of shadows

and Jamming. The Product algorithm is more resistant to "shadows" than

the MAD algoritlm, as expected; but both are seriously degraded by large

I ' : I•":;:'':..................".............""- ......... ... ":-
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amounts of high-intensity "jamming." Finally, a small number of gray-

level quantization codes were tried. In these tests, P increasedC

monotonically with the number of levels used, but 8-level (3-bit) codes

were about 90 percent as good as "continuous" (e.g., 64-level) codes

and so should suffice for many applications.

The fundamental nature of the map-matching problem is reexamined

in Part II of this study,iwhere the degree of theoretical justification

for the use of the various comparison metrics is also investigated.

Since the problem is basically one in statistical decision theory, the

analysis of Part II shows that the optimum solution is achieved by com-

puting the likelihood ratio for each comparison and then choosing the

match point at the place where the likelihood ratio is maximum. Un-

fortunately, that computation requires a knowledge of the N-dimensional

joint probability distributions--functions that are unknown and, in a

practical sense, unmeasurable. Hence, one must resort to approximations.

These usually take the form of maximizing or minimizing one of several

functions, herein called "metrics." In much current work, these are

chosen almost arbitrarily and therefore must be subjected to essentially

experimental validation. By considering two-picture-element scenes,

such that the likelihood ratio and several of the commonly used metrics

can be expressed in simple algebraic form and discussed in geometrical

terms, the essential features of the various metrics are explained and

compared with the likelihood ratio. ln this way heuristic arguments

are developed that support the use of the Product algorithm when S/N

is low and the MAD algorithm when SIN is high.

Two major conclusions were derived from this study and are pre-

sented in Section V. Tihe principal conclusion is that by using the

methods illustrated in this report, an approximate lower boktd on the

value of P can be calculated, so that one can, at least in principle,
c

design systems to ant acquisition specification. Several quantitative

relationships between P and various system parameters have been d&rivedc

and largely confirmed by simulation testing. These can be used to carry

out a number of design tradeoffs, including a balancing of the costs

of a tighter overall Pc requirement with the loss of those weapons that

fail to acquire. The theoretical model of the random (aussiai scene

*,.
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is known to be not completely realistic, but it appears to err on the

conservative side. Thus a "floor" for P can be established, whichc

should permit the flight test performance of future properly designed

systems to be somewhat better (i.e., to exhibit fewer gross errors)

than is predicted by this theory.

The second conclusion is that there ought to be better algorithms

than those that have usually been used in the past. Since (a) there

is at present little theoretical basis for the commonly used comparison

metrics, and (b) most real terrain contains features beyond those de-

scribable by simple Gaussian statistics, it seems both reasonable and

not inconsistent with theory to search for more efficient ways to carry

out the initial map-matching or target-acquisition function. In par-

ticular, drastic preprocessing to extract special features of a given

scene, using techniques currently being developed and exploited in the

field of pattern recognition, appears promising for the generation of

more efficient algorithms. Steps that can be taken in this direction

are briefly outlined.

I;
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P! I. INTRODUCTION

The military problem that initiated this study, and to which the

results are relevant, is one of achieving autonomous target acquisi-

tion and tracking for indirectly fired weapons. Such weapons will be

required in the future when manned aircraft are unable to penetrate to

within visual line-of-sight to intended targets without suffering in-

tolerable losses. The acquisition function is the more difficult of

the two, so mucd -o that to date only in exceptional instances is human

intervention not required at some stage of that process, whereas auto-

matic tracking following acquisition or "lock-on" is comnonplace. Both

requirements--that for target acquisition after weapon launch from

standoff and that for accurate terminal guidance--dictate (with few

exceptions) the presence of some kind of two-dimensional imaging sen-

sor on board the weapon.

The most common approach to in-flight acquisition is to acquire

the target in "real time" with direct human assistance, using radio

links between the weapon and its launch aircraft (or via relays to some

other control point). Radio links enable a human observer to find,

"identify, and "acquire" the target, and incidentally also to monitor

the subsequent tracking operation and refine it as needed. This ap-

proach has its obvious costs and vulnerabilities. Alternatively, if

prior roconnaissance'imagery of the target area is available, an ob-

server can study it, find the target, and mark it. If this marked

imagery (in some appropriate form) is then placed on board the weapon,

together with the sensor for obtaining "live" imagery, all that is

required in real time is to bring tiese two imageýs into coincidence.

This process can be mecchanized on the weapon. At that point, the

weapon will "know" where it is vith respect to the target and will be

able to steer itself to impact. This approach, too, has its costs

and vulnerabilities--both quite different from the data-link approauh.

This type of autonomous acquisition and tracking system is tiw subject

,of the present study.

"L-A
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The technical problem that needs to be examined reduces to one of

comparing two pieces of terrain imagery that are similar, but certainly

not identical, and that are presumably at least partially overlapping.

The acquisition function reduces to answering, with some preassigned

level of confidence, the question "Do the two images in fact overlap,

so that they can be brought into registry?" The tracking function

corresponds to measuring, as accurately as possible, the displacement

between the centers of the two images after registration has been

achieved, and repeating this measurement with updated sensor images

obtained as the weapon approaches the target. These displacements are

then supplied to the guidance system to effect terminal guidance and

"homing" onto the target. The image registration process is colloquially

referred to as "map matching," or sometimes as image correlation--al-

though correlation in the strict mathematical definition of that word

may or may not be required.

The idea of using map-matching teehniques for missile guidance has

been around for a long time, and indeed the Air Force has actively

sponsored hardware development programs in this field for at least 20

years. The implementations in early systems were all analog--either

optomechanical or electro-optical in nature; today, in keeping with

current integrated circuit technology, most of the work is digital.

However, the principles, and the fundamental strengths and weaknesses,

are still the same. The major weakness of these systems, and the reason

for more failures than successes in the past, is that they are in-

herently susceptible to false matches, which, of course, leads to gross

errors and wasted (or worse) weapons. In fact, past systems that have

had the greatest, though still marginal, level of success were those

that minimized the acquisition requirement--either by more or less

continuously tracking a succession of planned checkpoint areas all the

way from launch or, in the case of manned bombers, by using a crew

member to monitor the acquisitiou phase and relying on the correlator

only for accurate tracking. Past analyses 12) of correlation guidance

systems have also concentrated on the achievable tracking accuracy and,

with one notable exception 131, have almost ignored the "false-lock" or
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gross-error problem. Because of this unfortunate history in an other-

wise promising and needed area of development, the principal effort
in the current study has been directed to more fully understanding the
acquisition aspects of image correlation.

!4:2
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II. A PRELIMINARY ANALYTICAL APPROACH

STATEMENT OF THE PROBLEM

The mathematical formulation of the correlation problem can be

introduced as follows. Although images have an inherently two-

dimensional format, initially it will suffice (and it will simplify

the exposition) to use but a single index to designate the picture

elements in a map or scene. The implied extension to a full two-

dimensional notation is straightforward and should cause no confusion

or loss of generality, at least in concept.

The operational situation to be modeled is the following: An

airborne or satellite-borne sensor images a scene on the ground con-

taining a target. This image is broken down into an array of M (square)

picture elements (sometimes called pixels), and a value XI, represent-

ing a certain level of a gray scale, is assigned to each element. These

data are stored in a computer memory and are henceforth referred to as

the "reference map." This reference map, shown schematically in Fig. 1,

contains the target located at the center. At some time later, another

sensor on board an aircraft or a weapon images a smaller portion of this

same scene containing N elements, Y,, which are similarly digitized to

form a "sensor map." (In Fig, 1, both maps are assumed to be square,

purely for convenience of notation; thus, m - Al and n - X represent

the number of picture elements in one row of the reference and sensor

maps, respectively.) The center of the sensor map, which is related

to the boresight of the weapon, will generally be displaced from the

center of the reference map by some unknown amount that depends on mid-

course navigation and pointing errors, and the sensor map may or may

not actually contain the target. The first problem, then, is to find

.(if it exists) the portion of the reference mpn that matches the sensor

map. Once this is accomplished, the displacement or offset between the

centers of the two maps (shown with two components [K,LI in Fig. 1)

serves as the correction signal to the guidance/control subsystem.

Three-dimersional images and 3-D terrain/structure modeling are,
of course, possible, but these are ignored for the present.

10
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X X2  Xmn

Xm~i REFERENCE MAP

M Elements

ý -Arbitrary 
element

Target location

ýJ SENSOR MAP K
N elements

Sensor map
center

Arbitrary
Selement

Y1

Fig. I -Mop definitlons

To simplify the exposition, it has been explicitly assumed above

that the sensor map is smaller than the reference map. In principle.,

it could be the other way around: a small reference map could be

watched against a large sensor map, and any analysis of one case would

be completely applicable to the other by simply interchanging the defi-

I nitions of M and W (Kalways being the larger). The differences are,
of course, Important for hardware implementation choices that may he

driven by-economic and/or dynamic considerations. For example, appli-

cations involving only navigational position-fixing en route would prob-

ably not warrant the cost of extensive reference preparation and on-

board storage, so that. the, aecond alternative (using a small reference)
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might be preferred. However, in the case of terminal homing against

known targets, the time constraint on acquiring data for the last

steering correction, combined with the added cost of a large field-

of-view sensor, would argue the other way. Since the primary concern

of this report is with terminal homing, the use of a small sensor map

and a large reference map is assumed consistently; but, to repeat, the

analysis really covers both cases.

In attempting to properly locate the sensot map relative to the

reference map, the sensor map must be compared with numerous equally

sized portions of the reference map. In Fig. 2, the sensor map is

shown in two positions--one is the correct or matching position, and

REFERENCE MAP

SENSOR MAP

Displaced Location

SENSOR MAP
True Location (

Fig. 2--Definition of nw displacement

I.'
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the other is one of the Q possible nonmatching positions. The dis-

placement from the correct location of the sensor map to any arbitrary

position is defined to be the displacement vector, here indicated by

a single index, J. In the absence of certain geometrical errors to be

discussed later, all elements of the sensor map are correctly posi-

tioned with the corresponding elements of the reference map when the

displacement vector is zero. The acquisition phase of the image corre-

lation problem thus reduces to a two-state discrimination problem, i.e.,

to one of discriminating between the case when the displacement vector

equals zero (termed the in-register case) and the case when it does not

(termed the out-of-register case).

"METRICS" AND FORMULAS FOR P
c

The actual point-by-point comparison of the sensor map with the

reference inap is made by computing the value of one of several possible

functions of the displacement, J. Algorithms suitable for this compu-

tation can be considered, for the moment, as arbitrarily selected func-

tions or "metrics" whose efficacy is to be tested empirically. The

justification (or lack of it) for some of the possible choices is dis-

cussed more carefully in Part II of this report [1]. The most commonly

used algorithm is derived from classical correlation, which is approxi-

mated by computing finite sums, sometimes normalized, of the form

N

* z Y (Prod) . (1)

This is referred to as the Product algorithm. The next most important

me-tric is the mean absolute difference (HAD) algorithm, defined as

N
SY2() - 1x+J- Yz I (MB)

When the separation between positions is measured in units of the
V cell size, this number Q is, in the case of one-dimensional strip maps,

simply H - N; for two-dimensional maps, it is (m - n + 1)2 - 1.

It , -! W
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A third function, the difference squared,

N
1 ~T 2

•3 N Z (XN -Y) I
1=1

is of some theoretical interest and is mentioned again in Part II;

however, over the range of parameter values explored here, this ftmc-

tion always gives lower values for the probability of correct lock

than does *2" Many other algorithms have been tried, by us and by

others 14], with the same general conclusion. The exposition here is

confined to the Product and MAD algorithms as being representative of

the two principal classes of algorithms that have been proposed to date.

When the maps are in register, J = 0; and if no errors are present,

X1 = YI. It can easily be shown that W) has a maximum value and

that 02(J) has a minimum value under these conditions. Thus, If it can

be assumed that for some test position the two maps really do coincide,

then the value of J for which O(J) is an extremum essentially defines

the best match position between the two maps. However, in the presence

of noise and various other errors to be discussed, the extremum only

defines the correct match point on the aveaoge. Because of these ef-

fects there is only a certain probability, Pc (over an infinite ensemble

of maps), that the extremum actually defines the correct match point.

If p(OIS) denotes the conditional probability density of the value of

the metric when the maps are matched (S - signal present), and if

p(OIB) denotes the conditional probability density of the value of the

metric when the maps are mismatched (B - background present), then for

a maximizing metric the probability of correct acquisition is given by

P p($'IB) dO dO, (3)

where Q, as before, denotes the number of mismatched positions. A

I simple cltuge in the limits of integration describes the probability

I t .. ..
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of correct acquisition for a minimizing metric. 1 - P , of course,
C

gives the probability of a false lock or gross error--the problem

mentioned in Section I.

One straightforward, though certainly only approximate, method of

calculating P has been proposed by Johnson [5]. His method is approx-
c

imate because of the large number of quite fundamental assumptions he

has made in order to render the analysis tractable. Some of these

assumptions are known to be invalid, at least some of the time, if not

always. Nevertheless, calculations carried out using his method can

provide a good deal of insight into the operation of correlators.

Johnson's method, with certain extensions described below, provides

the basis for much of the work discussed in this report. His assump-

tions can be stated as follows:

1. The sensor signal (albeit distorted) does exist in the refer-

ence data--an assumption that is not made in the broader

Bayesian approach discussed in Part II of this study.

2. The reference data, X,, are assumed to be stationary, ergodic,
* 2

and Gaussian distributed with zero mean and variance <2
x

(Typical real scenes contain a two-dimensional structure,

usually but not necessarily man made--field boundaries, roads,

buildings--that are clearly non-Gaussian.)

3. The sensor data, YI, are assumed to be the reference data

corrupted by noise, such that Y X + N1, with N, stationary,

ergodic, and Gaussian distributed with zero mean and variance

a (Thus, only additive, white, uncorrelated noise is con-

sidered at this point. Other differences between X and Y
2 2

are discussed later.) The ratio a 2 Al is designated SIN andx nis referred to as the signal-to-noise ratio.

4. The reference map values. X1,. the sensor map values, Y1, and

the noise values, N,, are separately and mutually statisti-

V'. . €elly independent random variables. (This is probably not

5 Data with a nonzero mean can easily be reduced to meet this con-
dition by suitable preproceasoio.

I
• . .
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a "serious" or poorly met assumption; it does require, how-

ever, that when a scene exhibits spatial correlation, M and

N must be interpreted as the numbers of independent data

samples in the reference and sensor maps, respectively.)

5. The distribution of the values of the metric over the ensemble

of maps is also Gaussian. (The error introduced by this

demonstrably false assumption may be small as long as the

number of elements in the sensor map is large enough for the

central limit theorem to hold. This point has been investi-

gated in detail by Sollfrey, but only for the Product algo-

rithm; he finds that, due to some compensating effects, the

correct result is not seriously different from the Gaussian

calculation.)

With these assumptions, it is indeed straightforward, though

somewhat tedious, to calculate the ensemble means and variances of

various metrics both for in-register (J = 0) and out-of-register (J # 0)

conditions, and then to compute P by means of a formula of the form
C

0 -

where o and , are the ensemble mean values of the metric whon the

maps are in and out of register, respectively; 0 and are the on-

semble variances when the maps are in and nut of register; w is •o - 00;

and Q is the number of out-of-register values oi J as defined in the

footnote on p. 7. The quantities soa , and cy are simply relatedt

to N, a2 ad a2. Values of P have been obtained by numerical inte-
U It* C

gration of Eq. (4) for various values of the parameters N, ', and SIN

W. Sollfrey, The Rand Corporation (private communication).
tThe relevant o 1semble statistics for the quantities o, 0, and

a are shown iu the table below. Corresponding formulas for other

I.

i " "
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within the ranges~ of 10 :9 N •10 ,10 Q 10 ,and 0.1 :9 S/N ::r 30,

using Rand's IBM 370/158 computer.

NUMERICALRESULTS

Some of the results of these calculations are shown in Fig. 3,

where P is plotted as a function of the S/N ratio for two specificC
values of N and Q, for both the Product and MAD algorithms. In order

to illustrate more clearly the nature of the dependence on the param-

eters N and Q, additional data are presented in Figs. 4 through 6 in

the form of contours of constant probability (PC = 0.99, 0.90, 0.70,

and 0.50) as a function of N and Q for three different values of S/N,

again for both algorithms.

CONCLUS IONS
t1

The following significant conclusions can be drawn from these

data.

0 Tile probability of correct matchP , incr~ases with an in-

craein thle elemental signal-to-noise ratio, SIN, and with anl increase

in tile size of the ddta sample, N. (T.his, of course, As to be ex-

pected, since thle t(,ýat. aignal-to-noise ratio represented by the sum

of the contribution from each sensor map element is increiased by either

an inreas in he eemenal signal-to-noise ratio or an it cres in4th

total numiber of sensor map Oletwuit~s.)

apr it.hm', have been drvdbut aentneeded here.

Algorithm 00

Prd0 /(0 .0

x x x 11 1

MAl 2it (-2/n) (0 IN) (0 -V4OW + 0 )IN

ValIuIes (of PC, as low as 0.7 and 0.5 would probalbly be UnN3 tit-jf4ittory ft~r gajlitary .4yotewq; however. they are plotted fil korder to
liuw~ trendi; and to petmi.L extriipoittIO1S and -finttrpolations to Ile Ouade.

*St udi I..r coneljusiealt4 ihave been~ reached toy a.se~kheed 4 1 ill a ss
tematit: survey of owoy possiible algorithws; htowever, their prinvipal

criterion for Judging the. successo l1gritlfs : heavra itiepwto lLaIuuwj~esor otIepoaiiyo orcMa1h
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N number of sensor map elements
1.0 ~~Q nu-mber Of out.-of-register __PO sitions

Q'? 0.8 JBN 3

E0
t0.6

o 
o

0~ 0.4 /

20.2

/ / -MAD
0.1 

1.0 
1Signal-to-noise ratio, S/N 1
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.
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a The probability of correct match, PF, decreases with increas-

ing Q, the number of out-of-register position, but the decrease with

increasing Q is relatively weak in comparison to the effect of a change

in the number of sensor map elements, N, as shown in Figs. 4 through 6.

(This behavior can be explained qualitatively by the fact that an in-

crease in the number of out-of-register positions tends to inci-ase the

root-mean-square variation in the value of the metric roughly as the

square root of Q, whereas an increase in N increases the value of the

metric linearly when the two maps are matched.)

* At low signal-to-noise ratios (S/N . 1), the Product is the

better algorithm, i.e., it leads to higher values of P . (This resultc

is analogous to the well-known finding in statistical communication

theory that a correlation receiver is the "matched filter," the best

receiver for detecting a signal in noise; however, as explained in

Part II of this report, the map-matching problem is fundamentally dif-

ferent and the apparent analogy cannot be pressed.)

* At high signal-to-noise ratios (S/V - 3), the MAD is the better

algorithm. (A heuristic explanation for this result is also given in

Part II. More importantly, it is shown next in Section III that, in

real-world systems applications, the high values of S/N that would

justify use of the MAD metric are very seldom realized.)

When 1 < SIN > 3, results are mixed and thechoice of algorithm
is not critical.
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III. TREATMENT OF VARIOUS SYSTEMATIC ERRORS

QUALITATIVE DISCUSSION OF ERROR SOURCES

The method described above can be extended to analyze, at least

approximately, the effectiveness of correlation techniques for target

acquisition when error sources other than simple additive noise are

present. In general, there are at least four classes of systematic

errors that can degrade correlation performance:

1. Geometrical distortions.

2. Systematic intensity changes.

3. Quantization errors.

4. Enemy jamming.

1. Any geometrical diatortion of the sensor map coordinates rela-

tive to the reference map coordinates degrades, in ways that are dis-

cussed below, the performance of a map-matching system. The four most
important types of geometrical distortion are synchronization, rotation

scale factor (magnification), and perspective errors. The detailed

analysis of these effects, for digital systems, involves synthesizing

a grid of cells each of which is given a value that is an appropriately

weighted average of the values of the distorted cells that partially

overlap each of the undistorted cells. These errors are illustrated

in Fig. 7, where, for each case, the four cells surrounding the center

of the reference map are depicted, together with the corresponding cells

of the distorted sensor map.

Synchronization errors occur because there is no way to ensure a
comoti origin between the sensor and reference map grids. As shown lin

the figure, this type of error results itn all the grid elements of one

map being fractionally displaced from those of the other map. 11tis

displacement can cause each sensor map grid element to overlap as many
as four grid elements of the reference map. The effects of synchroni-

zatiou erro'rs are most aignificant when the dimensions of a grid element

are comparable to the average dimensions of a statistically independent

scette elemnt.

t ..........
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Rotation errors can be caused by heading or attitude reference

errors on board the weapon. If the sensor map is centered but rotated

relative to the reference map, the map-matching process compares a

single sensor cell with a combination of fractions of both matching

and nonmatching reference cells. The amount of overlap with nonmatch-

ing cells increases as one moves radially outward from the center of

the two maps.

Uniform magnification or scale errors are primarily caused by

errors in weapon altitude or range to the target, although in some

cases they may be caused by several other effects as well. In the

presence of scale factor errors, the sensor elements are dimensioned

either somewhat larger or somewhat smaller than the reference map ele-

ments. Consequently, elements of the sensor map, when overlaid on the

reference scene, will again encompass both matching and nonmatching

reference elements, with the amount of nonmatching overlap increasing

as one moves radially outward from the center.

Perspective errors occur when the sensor views the reference area

from a different position in space, because of midcourse navigation

inaccuracies, for example. Owing to the difference in perspective, a

grid pattern of square cells is transformed into an array of trapezoids.

Thus, the effect is similar to a linearly varying scale factor error.

When geometrical distortions are present, only a partial match

between sensor and reference map elements is possible. When the map

centers are slightly displaced, some of the previously nonmatching map

elements are brought into coincidence, so that a partial match condi-

tion holds for these displacements. The overall effects on the corre-

lation function or comparison metric are thus twofolhd: the peak value

of the metric for the matched condition is reduced, and the breadth of

the function is increased.

2. •cyvtnatio sintMowity yora include all changes in the ampli-

tude (or Intensity) of the sensed scene relative to the reCerence scene

T": that cannot be attributed to sensor noise. These changes can be aggre-

gated into four general categories: (a) uniform change in overall signal

level, (b) shadowing and obscurations, (c) changes in scenr, reflectivity/

emissivity, and (d) reforence map construction errors.
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;Ii The overall signal level of the sensor scene relative to the

reference scene can be altered by changes in scene illumination (e.g.,

day/night or sun/overcast) or by changes in sensor gain settings.

Changes in the optical properties of the atmosphere can also change

the overall signal level and/or the contrast perceived by the sensor.

Shadows due to clouds or changes in sun angle, and obscurations due to

intervening hills or foliage, cause blocks of sensor data elements to

be totally dissimilar to the corresponding reference data elements.

The reflectivity of certain portions of a scene can change drastically

as a result of physical changes on the ground, such as snowfall or

flooding, or less drastically but significantly as a result of dif-

ferences in moisture content or seasonal changes in foliage and vegeta-

tion, or to a still lesser degree simply because of differences in the

direction of the illumination by either active sensors or the sun at

different times of day. Finally, the sensor scene can be different

from the reference scene owing to actual changes in the reference scene

(e.g., new man-made objects) and to reference map construction errors.

This last category includes all errors made in producing the reference

map, but primarily refers to errors made in transforming the original

reconnaissance data taken in one spectral region (e.g., photographic)

into a reference map for use with a "live" sensor in a different spectral

region (such as infrared or millimeter waves).

Thiese systematic errors generally do not increase the width of the

correlation function significantly, but they do certainly reduce the

differential between the in- and out-of-register values, thereby increas-

ing the possibility for false locks.

3. lin digital correlation systems, the sensor data, which are

usually analog in nature originally and may have any one of a conttin-

uum of values at each pixel, are quantized into discrete levels and

encoded. This process gives rise to what is sometimes called (through

analogy with photographic systems) gray-level coding errors, or, more

generally, quafatiu tfo ce,•,',. The effects of quantization become

important when only a few gray levels arq used and when other errors

are present simultdneously. Under those conditions, a signal that is

distorted or has had noise added to it may either be coded exactly like

91!
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the original (in which case, the effect of the noise or distortion

has been eliminated) or it may be coded at a different level (in which

case the effect of the original error is usually exacerbated). Thus,

the effect is something like the addition of noise, but it is a peculiar,

nan-Gaussian, kind of noise.

4. Finally, enemy jamming can cause (a) additional noise, possibly

time varying, in all or a portion of the sensor elements or (b), in

severe cases, complete saturation of most or all of the sensor elements.

As with the "block" errors described above, the principal effect of jam-

ming is usually to weaken the extremum value of the comparison metric,

thus decreasing PC.
c

ANALYSIS OF GEOMETRIC ERRORS

Of the geometric errors, synchronization, scale factor, and rota-

tion errors have been examined explicitly. Because of the difficulty

in modeling perspective errors, and because results generally similar

to those produced by scale factor errors are to be expected, this type

of geometric distortion has not been evaluated here. The analysis of

the effects of uniform intensity errors are described here; the effects

of quantization and a brief simulation of enemy jamming are reported

in Section IV.

SYNCHRON IZATION

As mentioned previously, a synchronization error causes every ele-

ment in the sensor map to be fractionally displaced, usually both verti-

cally and horizontally, from the corresponding elements of the reference

map. The amount of sensor/reference map overlap can be measured by the

parameters t as shown in Fig. 8. Thus, a new reference map, X*, can

be established by constructing a properly weighted average of the values

in the four cello that partially overlap cell Y

This procedure enables one to use Eq. (4) for calculating the ac-

quisition probability in the presence of a specified synchronization

error. Tihe calculation involves two preliminary steps: (1) setting

up the necessary statistical quantities, i.e., the ensemble means and

'variances of both in- and out-of-register comparison metrics (as above),

, .I ,, , , -" . - . .• • . • -.. -" " -" •- " .v "" " -*.., : , --, , . - . ,.... . . .. . .. .

" ' i- " !..i-::. ": : "" '"" ' ": ':•"e
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XI+J XI+J+I

{ al a2
I UI

I Yi+j I

{ 13 a 4

Sensor element

XI+J+m XI+J+m+i

If ,1 = fractional area of cell X,,J overlapping cell Y1+J, etc.,

then X' 1+J = al X1+j + at2 X1+J+1  + 03 XI+J+m+ a4 XI+J+m+l1

Fig. 8-Cell construction for anolysis of synchronization errors

and (2) finding the extremum of the four partially overlapping posi-

tions. Specifically, for this second step a new random variable is

formed that is the maximum (minimum) of all in-partial-register values

of the metric. The pr --aallity density function of this random vari-
able can be expressed in terms of the probability density functions of
the four in-partial-register metric values. Then, P can be calculated

by replacing the distribution of the in-register correlation function

(in the standard case of only one match point) with this distribution

of the maximum value, and proceeding wich the approach outlined

previously.

Some of the results of this analysis are presented in Figs. 9

through 11 in the form .(as before) of P contours. The worst-case€
synchronization error (producing the lowest values of Pc) occurs when
each sensor element overlaps four refetence elements and the areas of

overlap are equal (G 1 W2 Cg 3 wc4 0.25). An examination of these

contours shmws the Product algorithm to be superior to the HAD algorithm
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Number of out-of-register positions, Q

Fig. 1 I -Probability contours for S/N = 30 + maximum synchronization error

for all S/N ratios (0.1 to 30) when worst-case synchronization errors

are present. This result is easily understood if the lack of synchron-

ization is interpreted (loosely) as an additional source of "noise,"

i.e., unavoidable differences between the two maps. Comparison of

these results with Figs. 4 through 6, as illustrated explicitly in

Fig, 12, shows that the effective value of S/N in the presence of worst-

case synchronization errors is never greater than unity (on scenes with

no spatial correlation); hence, according to the original finding with

regard to S/N, the Product algorithm shottld be superior. Additional

data on the relative degradat.on of P as a function of the magnitude
c

and direction of the synchronization error is presented in Fig. 13 for

a few specific situations.

HAGNIFICATION

With a magnification or scale factor error (assumed isotropic and

constant over the map), as mentioned earlier, the sensor elements are

dimensioned either somewhat larger or somewhat smaller than the refer-

ence map elements. The effects of such errors can again be analyzed

by constructing an artificial reference map conisting of appropriately

'I.- ..

i 0
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weighted combinations of the partially overlapping cells, and proceed-

ing in a manner that is completely analogous to that used in analyzing

synchronization errors. For the purpose of this analysis, the follow-

ing values of scale factor have been used:

p = 1.01, 1.02, 1.05, 1.1, 1.2, 1.5, 2

and the following sensor map sizes have been selected:

10 x 10 (N = 102)

30 x 30 (N = 9 x 102)

100 x 100 (N = 104)

300 x 300 (N - 9 x 10 4

To illustrate how scale factor error both spreads the correlation

function and decreases its peak value, consider a 10 x 10 sensor map

and a function of the displacement that simply measures the total area

of overlap obtained by summing over all cells. Table 1 shows this

function for an array of displacements up to ±5 cells in both directions.

When there is no scale factor error (p - 1) and the two maps are posi-

tioned on center, all 100 sensor map elements match their reference map

counterparts. With each reference element defined to contain unit area,

the match area in this case is 100 units, which produces (in the absence

of noise or other errors) 100 percent overlap as shown. For any other

displacement position, there is no match between reference and fiensor

elements and, as indicated in the table, the overlapping match area is

zero.

As the scale factor is increased to 1.01, also shown in Table 1,

the number of displacement positions for which there is at least partial

overlap between the two maps increases from one to nine. In addition,

the area of overlap at the center position has decreaaed from 100 units

*Values of P < 1 can best be treated by using the reciprocal values
*-and interchanging the roles of reference and sensor maps.

*, .I. . •
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Table 1

RELATIVE MAGNITUDE OF OVERLAP AREA WITH MAGNIFICATION ERRORS

(Map size: 10 x 10)

Scale Factor Magnitude of Overlap Area

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

p 00 0.0 0.0 0.0 0.0 ri b'T'o7 0.0 0.0 0.0 0.0 0.0
0.0 0.- 00 .0.

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0,0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0,0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0,0 o 02 1.47 0"0.02 0.0 0.0 0.0 0.0

p- 1.01 0.0 0,0 0.0 0.0 1.47 96.04 1.47 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 L 0,02 1.47 0.02 , 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0,0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0,0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0,0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0,0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 ,0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 ' 2.25 00 . 0.0 0.0 0.0 0.0

0 1.1 0.0 0.0 0.0 0.0 1'12.00 6.00 12.00 0.0 0.0 0.0 0,0
0,0 0.0 0,0 0.0 L -2,1~5 - ~ 2. 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0,0 0,0 0,0 0.0 0.0 0.0 0.0 0,0
0.0 0.0 0.0 0,0 0.0 0.0 0.0 0,0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0,•o0 _.O.. o - - .o- 0.0 0.o .o 0.0 0.0
0.0 0.0 o 0.25 1.25 1.50 .1.50 1.50 1'2A- 0.25 • 010 0.0
a.0 0 0 1.25 6.25 7.50 7.50 7.50 6.25 1,25 0.0 0.0
0.0 0.0 ,1.50 7.50 .9.00 9.00 9.00 7.50 1.50 0.0 0A,

p. 1.5 0,0 0. , 1.50 7.%0 ,9.00 9.0o 9.00 7.5o 1.50 010 0 0
0.0 0.0 1,50 7,10 9.00 9.w0 9.00 7.S0 1,so 00. 0.0

0.0 0.0 1.25 6.25 7350 7.S0 7.50 6.25 1,2S 0.0 0.0
0 0 .,.0 1.50 1o25 0.2s jo.o 0.0
0,0 0.0 0.0 0.0 0.0 0.6 0. 0.0'0.0C6A 0.0 0.0
0.0 0,0 0,0 0,0 0.0 0.0 0.0 0.0. 0.0 0.0 0.0aaaaa.a a -2W i.aao oa.ao o7.o oa a Ya a aaaaoao Z & Y oaaaaaa

:2.00- .00 2.00 2.00 2.00 4.00 2.00 2.00 2,00 .4.00 1.00
'2.00 4.00 4.00 4,00 4.00 4,00 4.00 4.00 4.00 2.00 2,001
.2.00 4.00 4.00 4,00 4.00 4.00 4.00 4.00 4.00 4.00 2.001

'2.010 4.00 4.00 4.0N) 4.00 4,00 4.00 4.00 4.00 4.00 2.00I
,2.00 4.0t) 4.00 4.00 4.00 4.00 4.01) 4.00 4.00 4.00 2.001

IF . 2. 1.00 4.00 4.04) 4 4.00 WP) 4.00 4.00 4.00 4.00 2.00,
r2.1W .4.CO 4,.00 40 .4.0 4.0 6.00 4.00 4,04) 4,.00 2.001

( 204 .00 4.(00 4 tOA.04 4.00 4.00 4.00 4.00 4.00 4.04 2.00,
"".00 4.00 4.0 0 4.0) 4.00 4.00 4.00 4.00 6.00 4.00 2.001
" 2" 3W 4,00 4.00 4,00 4.00 4.00 4.00 4.00 4.00 4.A,) 2.0041 I

t ... + 0 o +m,,
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to approximately 96. The table shows a further ducrease in the maxi-

mum overlap as p is increased to 1.1. When p is increased to 1.5, the

number of displacement positions for which there is at least partial

overlap between the two maps has increased to 49, and the maximum over-

lap has dropped to 9 percent of what it was when there was no scale

factor error. Finally, when p = 2, the overlap function resembles a

plateau covering the entire *sensor map.

Table 2 conveniently summarizes the "width" of the overlap func-

tion in terms of the total number of displacement positions (including

center) for which at least partial overlap exists as a function of the

Table 2

NUMBER OF OVERLAPPING POSITIONS AS A FUNCTION
OF SCALE FACTOR AND MAP SIZE

Overlapping Positions for Map Sizes of--
Scale Factor,

p 10 x 10 30 x 30 100 X 100 300 X 300

1 1 1 1 1

1.01 9 9 9 25
1.02 9 9 9 49
1.05 9 9 49 289
1.1 9 25 121 9gl
1.2 9 49 441 3,72.1
15 49 289 2,601 22,901
2.0 121 961 10,201 90,601

naip size-and sciale factor. Table 3 sutimarizes the magnitudo .f the

maxiwtnh value of the overlap functlio relative to.the caSe. w4.thb..i6..

scale factor error (p 1), also as a functiou of nij se .aid s~aIe..

factor.

Tables 2 and 3 can be used a4 qualitative muasures0 of how the

seale facLor degrades eourrelator periormance. In order L, keep the

curredaLioul width narrow (e~g,, got mre than tifhte tolls) and the cLr-

relatioo peak relatively high (e.g., greater than 0.5), the relation-

hllip.1 Wtbween Wap size aand •calte factor error gives in tTable 4 are
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",! Table 3

RELATIVE MAGNITUDE OF THE CORRELATION FUNCTION PEAK
AS A FUNCTION OF SCALE FACTOR ERROR AND MAP SIZE

Magnitude of Correlation Peak
for Map Sizes of--

Scale Factor,

p 10 X 10 30 x 30 100 X 100 300 x 300

1.01 .96 .86 .57 .11
1.02 .92 .74 .26 .03
1.05 .81 .42 .04 .005
1.1 .64 .13 .01 .001
1.2 .36 .04 .004 .0004
1.5 .09 .01 .0009 .0001
2.0 .04 .002 .0004 .00004

suggested as practical operating requirements. These relationships

can be expressed by the following rule of thumb:

n(p-1) ( 1, (5)

which simply states tlht the displacement (n/2)(p - 1) of a border cell

should not exceed one-half cell width. Since maps as small as 10 x 10

will probably not be used in practice, this rule translates into a re-

quirement on the scale (or on tie estimated range to the target) of I

to 5 prcout--a not unreasonable requirement.

Table 4

"APPROIMAT EI !ATIONSHIiPS FOR ALLOWABLE
SCALIE VAL'TOR ERROR AS A FUNCTION

or. 41m, SIZE~

Hap Slio. Seale Factor

10 X 10 p .1l5
30 x 30 p 1.04

100 X 100 0 -' 1.01
300 x 300 Not to be used
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The calculation of PC in the presence of a scale factor error

proceeds exactly as before. Results are presented in Fig. 14. It is

apparent that scale factor errors always degrade correlator performance

because of the decreased number of effectively matched cells.

Prod
MAD

S0.8 - N - 100
E - \Q = 104

u 0.6 -
S\ S/N =30

0
U

- 0.4

0.00
0.2

~*0
0 1.1 1.2 1.3 1.4

Magnification, p

rT.j 14 -P.ca o function of magnification p

ROTATION

As with scale factor errors, a rotation between reference and

sensor maps also increases the correlation spread over a larger number

of displacement positions and decreases the peak of the correlation

function. An illustrative example, similar to that provided for scale

factor error, is shown in Table 5 for an assumed 10 x 10 sensor map.

When there is no rotation error (0 - 0) and when the map centers co-

incide, all 100 sensor map elements match their reference map counter-

parts; for any other displacement position, there is no overlap. As

0 increases to 0.2 radian, as shown in Table 5, the nonzero overlap

region spreads to nine cells and the magnitude of the maximum over.ap

decreases progressively. When 0 reaches 0.5 radian, the number of

displacement positions for which there is at least partial correlation

between the two maps increases to forty-five.

A separate analysis, analogous to that used for scale factor errors,

can be extended to determine P as a function of map size, rotation

iC
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Table 5

RELATIVE MAGNITUDE OF OVERLAP AREA WITH ROTATION ERRORS

(Map size: 10 x 10)

Rotation Error
(radians) Magnitude of Overlap Area

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0,0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

B - 0 0.0 0.0 0.0 0.0 0.0 100 0 0.0 0.0 0.0 0.0 0.0
L 00 . 0 00

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0,0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 . 0.Q 0. ---- 0.0 0.0 0.0 0.0 0.00,
0.0 0.0 0.0 0.0 1 0.02 1.22 0.02 0.0 0.0 0.0 0.0

0- .01 0.0 0.0 0.0 0.0 1.22 95.06 1.22 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 L 0.01 . 1.2_2 0.02 0.0 0.0 0.0 0.0
0.0 0,0 0.0 0.0 0,0' 0.0C -0.0 0.0 0.0 0.0 0.0
0.0 0.0 0,0 0.0 0.0 0.0 0,0 0,0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0,0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 1).0 0.0 0.0 0.0 0.0 0.0

0,0 03.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0,0 0,0 0.0 0.0 0,0 01.0 0.0 0.0 0.0 0.0 0.0
0.0 0,0 0.0 0.0 ,0 0.0 . 0.0 0' 0 0 .000 0.0
0.0 0.0 3.o 0,0 0o,3a n 0.3762o 0.0 0.0 0.0 0.0

6e- .05 0.0 0.0) 0,0 0.0 5.47200 76,60538 5.47161 0.0 0.0 0.0 0.0
(~~)0. . 00 L .37663 5.47177 0.37676 ,1 0.0 0.0 0.0 0.0%,0 0.0 0.0 0.0 0.'0- 0.0 0.0-ý6 0.0 0.0 0.0 0.00.0 0.0 00 0.00 0.0

0.0 0. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0,0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0,0.0 0.0 o.0 0.0 0.0 0. . 00 0.0 0.0 0oo oo o.o

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0,0 0.0 0.0 0.0
0.0 0.0 0,0 0.0 0,0 0.0 0.0 0.0 0,0 0.0 0.0
0.0 0.0 0,0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0 0 .0 0A 9177 lt5ýV .17 0.0 0.0 0,0 0.0oo.0 *.0 0.0 o.o oio o.. o.o .... 0.o 0 0.0 0.0

0,0 0010 0.0 0 .0 0 LK0h 12.5H6 2.861j3 12.$8655 0,0 0.0 0.0 0.00.0~ 0,0 0,0 0.0 0.0 o, - 0 .o 0.0 0.0 0,0 o,00,0 0.0 0,0 0,0 0L0 0.0 o. 0.o 0.0 0,o 0,0

0.0 0. 0 0.0 0.0 0.0 0.0 0.0 0,0 Olt) 0.01 0.00.0 0.0 0.0 0,o 0,0 0.0 0.0 0.0 0"0 0.0 0.0
0.0 0.0 0,0 0,0 0.0 0.0 0,0 0.0 0.0 0.0 0,0

0,0 0.0 0,0 0,0 0.0 0,0 0.0 0.0 0.0 0.0 0,0
0,0 0,0 010 0.0 0:4 0.0 1u .0 0.0 0.0 0.0
0.,) 0,0 0i.0 0.0 ,10 0,6 '0, 00 0,0 0.0 0.0

0.0 0.0 I1.06 40,019 4.10, 4.068 4.10J 3.10, 0.o 146 0. 0,0
0. .5 0.0 0.0 '0.61w 3.694 4.060 4.09 4.0160 1.694 068 . .

0.0 0:0 '(. 46 1,104 4.10) 4,'.411 4.10.) 4.04)1.M 126 0.0 0.0
LU~j~ 4,61f9 31.694 4.104 .1.221 0 0.0 0.0

0,0 0,0 0.0 1O .694 1,j0.8 t.I08 1 ),30t, 0,0 0,0 0.0

0,0 0.0 0 0 .0 -6.4 0.0 o o--- t 6.5- 0.0 .0 o 0,0
.I, 0,.) 0.0 0,0 0. 0 01,0 0.0 0.0 0l.0t 0.0 0.0

" J-- -

i•)•--.i\
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error, and search area. This tedious step can be avoided, however, if

a relationship between scale factor errors and rotation errors can be

found. Such a relationship seems intuitively plausible, at least for

small rotation angles, and indeed one has been given by Lahart [6] as

0 Fp- . (6)

A comparison of the maximum area of overlap for scale factor and rota-

tion errors is shown in Fig. 15 for the 10 x 10 (N = 100) man size.

The agreement appears reasonably good, at least for the small rota-

tion and scale factor errors that are of interest. A test of this

relationship between 0 and p was also made for the larger map sizes,

Map Size: 10 x 10

L. '

a oRotation error(6)

100 Scale fao~to error (p-1)-
V

I L -1 -1 -1 1_1L 4.

0.01 0.10 1.0

0 (radloP, p -I

Fig. l5-Compariwn of the r.-lative maognitude
of the Corfeloatio peak for sCalo fNOWt

and ioiation e"lows

4 ..

-.
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and similar agreements were found. To demonstrate real equivalence,

it is also necessary to compare the relative shapes of the overlap

functions for both error sources. This is done by comparing the over-

lapping match area at each displacement position, for two values of p

and 0, with the sensor map containing 100 elements, as shown in Table 6.

Considering the computational inaccuracies associated with determining

the overlapping match area for both scale factor and rotation errors,

the agreement is quite good.

Table 6

COMPARISON OF OVERLAP AREAS FOR SCALE FACTOR AND ROTATION ERRORS

(Map size 10 x 10)

Scale Factor, Rotation Errors, Scale Factor, Rotation Errors,
p-1.01 eu.O1 - o 1.02 0 - .02

1--------------------------- ----,-------*
r . . . . . . . . . . . . . .----. . . . . ..-- --. . . . . . .

.02 1.5 .02, ;.02 1.2 .02: ' .09 2.9 .091 ,, 6 2.4 .06,
.1.5 96. 1.5 ý 1.2 95. 1.2 1 12.9 92, 2.9 : 2, 4 90. 2.4

.02 - . ..i6.02 1.5, 02 02 1.2 .02 09 2.9 .09' .064

- - -- - - - - -.

£ Consequently, on the basis of Lahartts arialysis and the rough

equivalence demonstrated here between scale factor error and rotation

(for small rotation errors), the analysis of and pertinent conclusions

"about the effects of scale factor errors are carried over directly to

the rotatiion problem. Speclfically, the rule of thumb embodied in

A. :Eq. (5) is extended to

ieO 1 (7)

in .accordance with Lahart's formula given in Eq. (6). This corresponds

to a rotation error (compass or attitude reference) of 1 to 5 percent,

of a radian or 0.6 dog to 2.9 deg (see Table 4)--again not an unreason-

able requirement.

A formula that is correct ýto .0 percent .eor p < 1.4 is',7 ... 0 - (p - il + 1.5(p - .1)).

rj

1>
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ANALYSIS OF UNIFORM AMPLITUDE ERRORS

A qualitative discussion of the effects of systematic intensity

errors has been given previously. The only case that has been analyzed

quantitatively here is that of a uniform change in the overall signal

level or gain by a factor K. The method is straightforward. Changes

in the amplitude (or intensity) of the sensor scene relative to the

reference scene do not affect the performance of the Product algorithm;

but they can have drastic effects on the performance of the MAD algo-

rithm, as illustrated in Fig. 16. The explanation of these results is

straightforward. The Product algorithm attains its maximum whenever

the sensor and reference map values are proportional to each other (see

Part II of this study); therefore a change in the overall signal level

by a constant factor has no effect. The MAD algorithm, on the other hand,

attains its minimum value when the sensor and reference maps are equaZ

to each other. Thus, the greater the change in the overall signal level,

the more unequal are corresponding sensor and reference map values.

1.0 . . .

a
N = 100

S0.5

0

MAD algorithm only
S (Prod Is upoflected) 3

S/N

0101 .0 0.50

Signal level reduction Noa., K

Fig. 16"Effect of tignal level los, onI
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CONCLUSIONS

In this section we have analyzed the effects of several commonly

encountered error sources on two specific comparison metrics. Apart

from the generation of certain constraints that must be satisfied if

the effects of these errors are to be held within reasonable bounds,

the most important conclusion to be drawn is the following: Real sys-

tems suffer from unavoidable synchronization errors, from geometrical

distortions that can be partially controlled (at a cost) but not elim-

inated, and from amplitude changes some of which are partially control-

lable (such as quantization, discussed in Section IV, system malfunctions,

and detector noise) but most of which are not controllable (the real

changes in the scene). These systems are therefore invariably operated

under conditions of rather low effective signal-to-noise ratios. Thus,

despite the simplicity and the apparent advantages of a MAD algorithm

or other differencing algorithms as presented in Section II, a Product

algorithm will almost always be superior in real-world applications.

A

Sd
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IV. SIMULATIONS USING REAL DATA

Inasmuch as real scenes exhibit various amounts of spatial corre-

lation, and often quite non-Gaussian "structure" as well, it was im-

portant to test the theoretical conclusions presented in the previous

sections using real-world data. This testing took the form of a number

of computer simulations that are described in this section.

THE DATA BASE

The digitized imagery used for all the computer simulations de-

scribed herein was taken from a computer tape obtained from Caltech's

Jet Propulsion Laboratory (JPL) in Pasadena. This tape contains a

digitized picture of a portion of Southern California, taken from an

earth resources satellite in the near infrared band. The region is

about 115 miles square, centered on the Antelope Valley; it includes

the Los Angeles Basin and a significant length of coastline as promi-

nent features. The original picture was about 2300 pixels (picture

elements) x 3200 pixels, but was processed to yield a true (square)

representation of 2300 x 2300 pixels. Each pixel represents a square

area of about 80 m on a side, and takes on a gray-level value of 0

to 63.

The tape is especially interesting because it contains very dif-

ferent types of terrain and man-nmde features. Four distinctive square

regions measuring I00 pixels (about 5 ml) on a side were selected for

analysis. The four regions used are "agricultural," a part of the

southern end of the San Joaquin Valley, characterized by fairly large

and regular fields of various crops; "mountains," a distinctive uaoun-

tainouNs area west of the desert; "desert," a relatively featureless

and low-ciontrast area in the Mojave Desert; and "suburban," a portion

of the San Fernando Valley in which there is a fairly regular grid of

major roads.

One of the basic statistica of interest is the correlation length,

tecause it effectively defines the size of a statistically independent

*cww Alumeut. Figure 17 shows the autocorrolation function, averaged

-N.
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c
S1.0

Approximate correlation length

o (in pixels)
0

0. Desert 3 - 13 (see text)

.0 Agricultural 5
-0.6 - Mountains 3

DeSuburban 2

- 0.4
o-0 '"Agricultural
a
.2 0.2 " Mountains

"T 0 " Suburban .

-0 I �I I -I I I I II
- 0 4 8 12 16 20 24 28 32 36 40

Distance in pixels

Fig. 17-Autocorrelatlon function for four selected scenes;

each scene is 100 x 100 pixels (about 5 mi sq)

over both x- and y-directions, for each of the four regions. An effec-

tive "correlation length" can be defined in various ways. A common

definition is the magnitude of the displacement for which the auto-

correlation value is l/e - 0.368. Using this definition, the correla-

tion lengths range from 2 for suburban to about 13 for desert.

The inadequacy of the concept of a single effective correlation

length to characterize a real scene, and/or the inadequacy of the par-

ticular definition used here, is apparent from thle graph. The desert

autocorrelation coefficient initially falls off more sharply than that

of the agricultural region, but then has a non-zero value for very

large displacements and approaches zero very slowly. This phenomenon

may be at least partially explained by the additional observation that,

when the correlation length was calculated for various subregions, the

value varied from about 3 to 13 for an average of about 8. Thus anl

accurate comparisor, with the previously obtained theoretical results

is not to be expected i.n this case, since the effective number of nta-

tistically independent samples is poorly defined.
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SIMULATIONS WITH NOISE ADDED

The most extensive simulations involved adding Gaussian noise

to the sensor scene, and calculating the values of both the Product

and the MAD metrics. The basic simulation paradigm used is as follows:

Divide each 100 x 100-pixel region into twenty-five 20 x 20-pixel non-

overlapping subregions; these are called the reference scenes. For

each of these scenes, extract a smaller patch (generally 5 x 5 or

10 x 10) from the center, and call this the sensor scene. (Since the

central 5 x 5 patch of a 20 x 20 subregion is not precisely defined,

choose one of the four possible candidates arbitrarily and use it con-

sistently thereafter.) Compute the mean and variance of each sensor

scene and subtract the mean from each element so that the new mean is

zero. Add Gaussian noise with zero mean and with a variance equal to

some multiple of the observed sensor variance to obtain the desired

S/N ratio. Superimpose this sensor scene on the reference scene in

each of the possible displacement positions (162 positions for a 5 x 5,

or 112 for a 10 x 10 sensor scene). For each superposition, also com-

pute the mean of the portion of the reference scene with which it is

to be matched, and remove its mean. Then apply each algorithm. If the

extreme value of the metric occurs when the sensor scene (with noise)

is placed in its original center position, then the search is a "success"

on that 20 x 20 subregion. The number of successes over the 25 sub-

regions for each algorithm can be computed and, in this manner, an

empirical probability, Pc' thereby computed.

Simulations using the Product algorithm, i.e., the unnormalized

product, resulted in a significant number of false matches. This, of

course, is to be expected when relatively small-area scenes are com-

pared, and even more so when the ensemble of sconce is not orgodic.

A specific numerical example will illustrate this problem. Con-
sider the following "manufactured" 4 x 4 reference scene:

"!11 1 1
1 1 1 1

I 1 -3 -11
1 1 1 1

and define the 2 x 2 center block as the "sensor" scene. (Note that
both the reference and sensor scenes have a zero mean.) If the Product

I .
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Hence the normalized Product algorithm (NProd), which is simply the

classical correlation coefficient, was used in place of the Product

algorithm.

Values of S/N = 1 and 3 were tried. At the higher value, almost

perfect matches (P c 1) were obtained in all cases. The results forc

S/N = 1 are shown, together with the theoretical predictions for

Gaussian ensembles, in Table 7. The empirical probabilities are, of

course, each based on only 25 cases. The st..ndard deviation of these
{(l 1/2values is given by a = [p(l - p)/n]I, where p is the average value

of P . Taking p s 0.8, it follows that a ; 0.08.
c

It is evident from these results that when real data are used,

both algorithms perform significantly better, as measured by the frac-

tion of correct acquisitions, than was predicted by the theory developed

in Section II. The explanation probably lies in the fact that the

statistics of real scenes are not Gaussian in nature, as was specifi-

cally assumed in the theory. That is to say, the specification of just

two parameters--root-mean-square signal amplitude and a single correla-

tion length--is far from adequate for characterizing terrain. It is

obvious that two of the scenes, agricultural and suburban, contain

structure (predominant spatial frequencies) that are, of course, far

from Gaussian in character; however, careful tests or measurements of

the degree of departure from Gaussian statistics have not been carried

out. Nevertheless, the strong inference persists, supported by intui-

tion, that correlation algorithms by their very nature are capable of

exploiting these structural (non-Gaussian) features and thereby achieve

high acquisition capabilities. A proper analysis of map-matching per-

formance in the future can be expected to include not only the effects

metric is computed at each of the nine possible superposition loca-
tions, the maximum value will be found to occur at the right center
"position rather than at the true center, whether or not the mean of
each 2 x 2 comparison area is subtracted out, because of the large
contribution of the -11 (multiplied by -3) to the sut of products.
If, on the other hand, the sum of products is normalized by dividing
by the product of the standard deviations of the sensor scene and each
2 x 2 comparieon scene of the reference map, any term containing the
-1l will be reduced by the correspondingly larger standard deviation,
with the result that the maximum value of the uormalized Product metric
occurs at the true center.

.A '
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of signal-to-noise ratio and spatial correlation (the Gaussian proper-

ties of a scene that have been considered in the foregoing), but also

some yet-to-be-determined higher-order statistical parameterzs and/or

special ad hoc feature descriptors.

One other experiment worth noting was conducted using this simula-

tion technique. Since the expected value and variance of the in- and

out-of-register correlation functions (as used in the P computation)• C

are functions of the S/N ratio, it should be possible to estimate S/N

from a set of observed expected values and variances. This could be

of some interest because, in actual operations, an adaptive processing

scheme might be used to select the best algorithm based on an initial

estimate of the S/N ratio. This was rled for the MAD algorithm only.
"2

The procedure was (1) to compute from the data aR, the variance of the

reference scene that makes the MAD a minimum, (2) to use the square of

the minimum correlation function value divided by 2/7* for aN' and
"2 ̂2

(3) to take the ratio of a R/N as the S/N estimate. In fact, this pro-

cedure can be used if geometric distortions are also present. When

the same expression is used for the expected value of the in-register

correlation function (because the proper expression for the S/N ratio

with geometric distortion present is too complicated), the results

show that one can estimate the equivalent S/N ratio from the data within

about 10 percent of its actual value, even in the presence of added

geometrical errors. This level of accuracy appears to be adequate for

the kind of adaptive processor suggested at the beginning of this

paragraph.

SIMULATION OF GEOMUTRICA DISTORTIONS

Several of the errors treated analytically in Section III were

subjected to a Limited amount of simulation testing, using the real-

world data described above. A program was written that introduces most

of the several geometric distortions into the sensor mnp. The follow-

ing limits were previously established for these error sources:

T.:
1/2

(2/.) 0 for the HAD algorithm (sce second footnote,
10 n

t.P. 1,,.
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Synchronization ... Maximum (a, = a 2 = a3 = 4 0.25)

* Scale factor ...... 10 percent (p •! 1.1)

Rotation .......... 5.7 deg (6 K 0.1)

All of these errors were added simultaneously, together with an S/N

ratio of 3. The sensor map size chosen was 10 Y 1O pixels (N = 100),

a size that would be large enough to prevent anomalous results due to

statistical fluctuations and at the same time would keep computer costs

in check. The original 20 x 20 reference map size was retained. As

before, an ensemble of twenty-five sensor maps for each scene type was

compared with the corresponding reference maps, using both MAD and

NProd algorithms. A correct lock-on was considered to be achieved if

the extremum occurred in any one of the nine displacement positions

(map center plus eight adjacent pixels) for which partial correlation

was present. This criterion was used because, as stated in Section I,

this investigation is chiefly concerned with "false" acquisitions. It

was assumed that different algorithms and appropriate iWterpolation

routines could be employed to refine the accuracy of tracking after

acquisition had been accomplished. The following results were obtained

from this; simulation:

Pc Agricultural Mountains Desert Suburban

For HAD 0.88 1.00 0.84 0.96

For NProd 0.96 1.00 0.96 1.00

These encouraging results are not unexpected, since in all cases

tile maximum linear displavenwitt between cells is significantly less

hattn a scene correlation lenigth. In the worst case (smallest correla-

tion length Pi 2 for the uuburban scenes), ithe aussumed synchronization

error eurresponds to a 56 percent area overlap between indeplindent

sceit eletments. The maximum displacement at tie Odge of tLI tensor

This itamber is correct when the suale factor or rotation error
is taken alone; the correlation width whien they are combined with a
synchronizatiod error is not known with certainty.
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map, for the assumed scale factor plus roL:tion errors, produces the

same displacement and degree of overlap; but in this case the average

displacement over the sensor map is two-thirds of the maximum.

As shown in the above table, and as was predicted by the theory

developed in Section II, these geometrical errors more severely degrade

the MAD algorithm than they do the Product algorithm. However, it is

clear that for this size reference and sensor map, geometric distortions

at the levels investigated do not seriously degrade the acquisition capa-

bilities of image correlators.

The theoretical analysis presented in Section III shows that, for

the assumed error magnitudes, the probability of correct lock-on is close

to unity for each type of geometric distortion taken separately in the

presence of additive noise. These simulation results, with all error

sources combined, are thus generally consistent with the theory. A

further analysis to determine the combinations of distortion and map

size for which significant degradation does occur was not made because

geometric errors greater than those assumed here are considered unlikely

in most operational situations.

SIMULATION OF INTENSITY CMIN(GES

The effects of systematic errors that result in changes in the.

amplitude of the sensor scene relative to the reference. scene were also

simulated. Both uniform intensity changes (e.g., a constant percentage

reduction in all intensities) and environmental. effects 'that cause block

portions of the sensor scene to be complatoey different from thtir ref-

erenee counturparts were tried.

"UNIFOR• GAIN CIANGE

The first experimeut used the same tuapu with additive noise and

with the same geuw, t:uitt errors (except 10 prcent-of-uwximum sytroni.h.a-

dion error) thtw were used in the geometrie distortion evaluation. Tht

amplitude of til senior matp wan then reduced utitformly by f actots of

Q.75 and O.50. The results of the cumputer simulations, based ou tnouty-

f ive simujatiotvb per region, are whow-n iio Table S.

I

[] ,
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Table 8

EFFECT OF UNIFORM RELATIVE AMPLITUDE ERRORS
ON THE PROBABILITY OF CORRELATION

(S/N = 3)

Relative Amplitude Factor

1.00 0.75 0.50

Scene Type MAD NProd MAD NProd eMAD NProd

Agricultural 0.96 0.96 1.00 1.00 0.56 0.92
Mountains 1.00 1.00 0.96 1.00 0.76 0.96
Desert 0.96 1.00 0.92 1.00 0.52 0.96
Suburban 1.00 1.00 1.00 1.00 0.64 1.00

ln accordance with the Gaussian theory, the Product algorithm is

not affected to any extent by uniform amplitude changes. The MAD

algorithm, however, can be seriously degraded when intensity-scale

changes occur, because the minimization of the metric requires an

equality rather than merely a proportionality between the sensor and

reference map values.

BLOCK SUBST ITUTIONS

.Nonuniform amplitude errors that extend over groups of contiguous

pixels are herein called block substitution errors. As discussed

earlier, the presetnce of clouds or shadows or certali types of sPnsor

malfunctions can cause errors of this type. A relatively crude experi-

ment was conducted Lo test the effects of such block substituttot% errors.

Central verttcal strips of area 0.3, 0.5, and 0.7 of the whole sensor

map ware successively removed. 'No different substitutions were made:

in one the block was replaced by the mean value (vero), with Io noise

(possibly simulattig a shadow); in the other the block was set equal

to the maximum value occurring oa the map, the new map was renortwlitvcd

to zero wean, mid then random noise was added to eavh pixel (thus simu-

lating on1e possible form of Jamming).

Table 9 shows the results of this experiment. As expected, degra-

dation increases with increasing size of the substituted block, aud
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Table 9

EFFECT OF CERTAIN BLOCK SUBSTITUTION ERRORS ON
THE PROBABILITY OF CORRELATION

(Noise added to sensor scene, S/N = 3)

"Shadow" Effect "Jamming" Effect

Fraction of Sensor Blocked Out-- Fracti.on of Sensor Blocked Ou:--

0.30 0.50 0.70 0.30 0.50 0.70

Scene Type M4AD NProd MAD NProd MAD NProd MAD NProd MAD INProd MAD N~'rod

Agricultural 1.00 1.00 .64 .84 .12 .56 .64 .68 .24 .36 .04 .04
Mountains .96 1.00 .80 .84 .32 .68 .92 .88 .32 .28 .00 .08
Desert 1.00 1.00 .96 1.00 .36 .84 .80 .72 .32 .40 .00 .24
Suburban 1,00 1.00 1.76 1 .96 .48 .68 .64 .52 .20 .36 .00 .08

depends somewhat on the scene type. Less degradation occurs when the

block is set equal to the mean value of the sensor map than when it is

set to the maximum value. It also appears that the Product algorithm

is much more resistant to large-block substitution errors than is the

MAD algorithm, particularly in the case of "shadows"; but both are

seriously degraded in the presence of high-intensity jamming.

Of course, the above conclusions apply only to the particular

types of block errors considered. Many more simulation runs would have

"to be made with other types of errors in order to provide general vali-

datien of these findings. Nevertheless, the results are quite inter-

esting, and confirm what intuition would dictate. They als'o suggest

directions for future research.

'RAY-LEVEL•QUANTIZATION

The effects of gray-level quatitization have been explored briefly

in two experimenltts, using a few simple encoding schemos. Quantization

necessarily introduces sow iLtgradation% of the map-matching process be-

cause information is always lost; thus, with binary coding, every gray

lovel is recorded as either -1 or 1--a draNtic level of data compression

and information loss. Wn the other hand, computations can be greatly

-iwmpltied ff the data levels can be reduced to a •i,1 number.

",::'..,' , .

N
4:r
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In the first experiment, a completely random and uncorrelated

20 x 20-pixel map was generated with continuous (6-digit Gaussian

random number) gray levels. The central 5 x 5 and 10 x 10 portions

were extracted, to which noise with the same standard deviation

(S/N = 1) was added 100 different times. Then the intensity levels

in each cell of both maps were quantized into each of the three coding

schemes shown in Table 10, and correlations were carried out using both

Table 10

QUANTIZATION CODES

True level 1.5a -1. .50 + 1

Two-level code -I +1

Four-level code -2 -1 +1 +2

Eighit-leve cde-. -4 - 2 +1 -+2 +3 +4

MAD and Product algorithms. It was found that with the 10 x 10 maps,

P e was espentially equal to unity for these quantization schemes. Using

the 5 x 5 maps, the results given in the first row of Table 11 were

obtained.

Those results show that P increases monotonically (as expored)c
with the number of quantization levels and that 8-level (i.e., 3-bit)
quantization schemes yield results close to the continuous case. There

are two additional points worth noting. First, whie the data are quan-

rLzed, there is a finite possibility that the correlation function will

take on its extremum value at several displaceteet positions. Whenever

this occurred in the simulations, it was counted (cnuiaervatively) as a

false lock, even though the true center was among the displac~maitt posi-
lions that produced the extremum. Second, it is observed that the MAD

wnd Product algoritl5s are iden•rcal for binary coding schemes. %Tis

fact can be demonst-rated in general by smeatis of a truth .table for -t1W

product and, for I -'dil,

This equivalence was first poiatwd out to the authors b# f. L.
Sondall of liughus Aircraft Compaay...

.. • .- ... -
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Table 11

EXPERIMENTAL VERIFICATION OF EFFECT OF QUANTIZATION
ON THE PROBABILITY OF CORRELATION

(N = 25, SIN =1)

Quantization Scheme

Continuous 8-level 4-level Binary

Scene Type MAD NProd MAD NProd MAD NProd MAD NProd

Random .90 .95 .78 .87 .65 .74 1.30 .30
Agricultural .72 .72 .64 .52 .36 .40 .36 .36
Mountains .76 .72 .60 .60 .36 .32 .28 .28
Desert .92 .92 .80 .80 .48 .56 .36 .36
Suburban .80 j.92 .72 .80 .68 .72 1.36 1.36

In the second experiment, the same quantization schemes were

applied to the usual JPL digitized scenes. The S/N ratio was set at

1, and a 20 x 20 reference map and a 5 x 5 sensor map were used. The

results are given in Table 11, together with the results for the ran-

doma scene. In this table, "continuous" denotes use of the original

data with no modification. It should be remembered, however, that the

original data itself is quantized to 64 levels, and that in practice

somewbat fewer levels are generally present in any region because of

a certain homogeneity within the region (especially in the desert).

With the exception of the binary case, these data show that the real

(partially correlated) scenes yield lower values of P~ than the arti-

ficial random scene; this conforms with the Gaussiani theory, since,

for the same number of pixels, there are fewer independent data samplus

in the real scenes.

The same two conclusions regardin~g the niumber of quan~tization~

levels hold in this case as for the artificial map. Thtus 8-jevul quail-

tizatioin (or powsibly 16-level in some cases) Is, expected to be suf-

ficknt for practical system applications. It should also be noted that

Y ~a niumbor of other coding schemes--altering the values assigned to each

level 4nd the demareations between levels--should be investigated until,

twarly optimum -codes are demonstrated.
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LOCAL OPERATORS

Finally, some very preliminary experiments using local operators

to preprocess the imagery were undertaken. The purpose of these ex-

periments was to determine whether the probability of correct acquisi-

tions could be improved when such operators are used. Much research

has been done elsewhere on such techniques as contrast enhancement and

edge detection, at.d their application to real-world imagery has yielded

spectacular results in some cases, e.g., the visual enhancement of

pictures returned from the moon and minor planets. The application of

such techniques to image correlation involves the preprocessing of both

reference and sensor scenes in a manner that will enhance those fea-

tures contributing most strongly to a successful correlation while

suppressing the noise.

Operators are generally of two types, global or local. "Globai"

refers to operators that transform the picture as a whole, such as

-histogram equalization or Fourier transformation. Local operators

transform a small portion of the picture at a time, but are generally

applied repetitively over the whole picture. Our experiments to date

have been limited to local operators.

Two simple local operators were applied to each scene through

computer simulation programs similar to those described previously.

Tile values of N, Q, and S/N were tile same as those used in the earlier

simulations, so tlhe results can be directly compared.

The first local operator applied is referred to as a Laplacian,

because it is one of a class of operators used to fonm a finite-

difference approximation to the continuous Laplacian operator (sum of

second partial derivatives). The particular one employed here is the

following two-d imeusio~ul weighting fun ction:

-1 -1 -l

-1 8 -1

-1 -l -1

1he fartor 8 is provided only to preserve a zero mean. When
applied to an edge or corner of the mulpl, tie weighting function iS
appropriately truncated and tile centrul factor Is modified accordingly.
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In use, this function is convolved with every point of the picture.

Thus the value of the map at a given point is replaced by the weighted

sum of products of map and weighting function values over a neighbor-

hood of 9 pixels.

The simulation was done exactly like the additive noise simula-

tion described earlier, except that 7 x 7 patches were extracted from

the original map (before application of the Laplacian) to form the

sensor scene. Gaussian noise (S/N = 1) was then added to the 7 x 7

map and the Laplacian was applied to this noisy map. In this case the

edges were later discarded, leaving a 5 x 5 sensor map. (It is usually

not necessary to subtract the means, because the Laplacian operator

generally produices a mean that is small in relation to the standard

deviation.) Both the NProd and MAD algorithms were applied and
"successes" were recorded if the extremum occurred when the two map

centers coincided. The empirical probabilities thus determined are

shown below:

P Agricultural Mountains Desert Suburban Theoryc

For HAd) .40 .24 .60 .48 .50

For NProd .40 .28 .76 .56 .70

These results are more nearly in agreement with the original theo-

retical predictions of Section II (S/N 1, N * 25, Q = 255) than were

those for the unprocessed scenes, a situation that may possibly be ex-

plained by the fact that the application of the Laplacian operator tends

to produce picturvs with sta'satic.s that are more nearly Gaussian.

oowever, it is noteworthy that the application of the Laplacian does

not result in, greater improvement, possibly because the Laplacian, being

basically a point operator, tends to emphasize isolated noisy points.

it is speculated thlat some smoothing of the data and/or application of

a larger Laplacian (say, 9 x 9 in place of 3 x 3), would alleviate this

problem; however suchi experiments have not been attempted as of this

writing.
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The second local operator tried was a type of scalar gradient.

A true (vector) gradient is somewhat difficult to handle and is pre-

sur.:: ,ily sensitive to rotation errors. The scalar gradient used was

the average magnitude of the change in gray-scale value between a

pixel and its 8 neighbors. This gradient is not unlike several that

have appeared in the literature and is somewhat like an edge-detection

operator.

By using this gradient, and applying the same general procedure as

with the Laplacian but with the mean subtracted, we obtained the follow-

ing results for the probability of correct acquisition:

P Agricultural Mountains Desert Suburban TheoryC

For MAD .16 .08 .16 .12 0.50

For NProd .04 .00 .16 .16 0. 70

These first results are quite poor and indicate that at least this

version of the gradient is not very useful. The effort on preprocessing,

using various local operators, is continuing.

CONCLUS IUNS

There are two conclusions to be drawn from the real-world-scene

experimental work that has been described in this section. The first,

and quite significant, conclusion is that correlation devices generally

pirform better on real scenes titan is predicted by simple (aussian

theory. The second conclusion is that the predicted effects of various

geometrical distortions and of changes in signal amplitudes, including

quantization effects, are generally confir•eid. "Onie very preliminary

attempts to use preprocessing "filters" are still quite inconclusive.

: .
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V. MAJOR CONCLUSIONS AND FUTURE PLANS

The principal, overall conclusion of this study is that an approx-

imate lower bound on the value of P -- the probability of correct (andc
autonomous) target acquisition--can be calculated, so that one can, at

least in principle, design systems to meet an acquisition specification.

Quantitative relationships have been presented that show the de-

pendence of P on N (the sensor map size), M (the search area or refer-c

ence map size), S/N (nominally the signal-to-noise ratio but, more

importantly, a measure of the fidelity of the reference map vis a vis

the real-time sensor map), and various parameters describing systematic

intensity and geometrical errors. Thus one has the tools for carrying

out design tradeoffs on sensor resolution and field of view (to increase

N), on midcourse navigation (to decrease M), on attitude reference and

guidance (to reduce geometrical distortions), on data processing capa-

bilities (to reduce both synchronization and quantization effects), on

more recent and more accurate reference data (to increase S/N), and so

on, including, finally, a tradeoff of the cost of increasing the P

requirement itself with the loss of those few weapons that will be

wasted if they achieve a false lock.

Most of the above-mentioned relationships for Pc are derived from

"a simple Gaussian theory that is known to be unrealistic. Fortunately,

however, this theory appears to err on the conservative side--most

scenes are more distinctive than assumed and results are better than
predicted. On the other hand, real systems have additional error

sources that have not been analyzed in the experiments conducted in this

study. Tite important point is that, with a "floor" established for P

there should be io major surprises in future flight tests of either

experimental or operational hardware in the field of image correlation

guidance; improvements in tie theory, and additional data from simula-

tion experiments using specific scenes of interest, can only improve

tile predictions and relAx some of the design restrictions. One .an

design to P requirements, though at the moment not as effectively as

would be desired.
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The second major conclusion of this study is that one may find

better algorithms in the future than those that have usually been used

in the past. The argument runs as follows: It is shown in Part II of

this study that, in general, there is not a unique or demonstrably

optimum algorithm for maximizing the acquisition capability of a map-

matching or image correlation guidance system. This statement is a

consequence of the fundamental nature of the map-matching process,

which involves, in any real situation, the comparison of nonidentical

imagery. Furthermore, simulation experiments are reported in Section

IV in which the acquisition probabilities obtained by using real scenes

were higher than those predicted by straightforward Gaussian theory.

It was concluded that this phenomenon is due precisely to the special

features--i.e., the non-Gaussian structure--that are present in most

scenes and that render them more distinctive than samples of pure

Gaussian noise would be.

Based on these two conclusions, the authors believe that approaches

founded on feature selection may lead to more efficient methods for

implementing this class of guidance system. Rather than to simply refine

algorithm•s that still compare every pixel in the sensor and reference

scenes, one should search for powerful preprocessing schemes to extract

the "most unique" features. One would perhaps apply several feature-

selecting algorithms to a reference scene until "good" or efficient

features were found for each specific scene; then not only would the

reference map be modified, but the on-board preprocnssor would be in-

structed to look for the samue chosen features in the sensor map. As a

consequence, the chances for a false lock should be reduced, and at the

same time the amount of real-time processing required should also be

reduced. The degree of improvement cannot be known at the present time;

for some scenes it will be negligible, but for others it may be sub-

stantial. Only further study anl experimentation can resolve this point.

Sioce the expected operatiotnal context involves getting prior imagery

anyway, this concept may be quite appropriate for military applications.

Instead of using cooventioinal feature-extraction algorithmq, cur-

rent plans are to devwlop procedures that relate more closely to the

problem at. hand. For example, one need only determine where map A falls
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Swithin map B; it is not necessary to assign a classification to map A

according to standard pattern recognition methods. Although these pro-

cedures can provide some guidance, certain new techniques seem more

promising, particularly the extraction of features that seem visually

unique, such as road intersections and certain other man-made objects

that lend "distinctiveness" to a picture. This idea may be generalized

and a form of local pseudoentropy may be calculated as a device for

isolating such features. Furthermore, the relationships of these fea-

tures to each other can provide valuable cues. Syntactic pattern

recognition, which takes such relationships into account, can be a

useful tool here; however, care must be taken to use just that which

is appropriate, without an overemphasis on formalism. Some techniques

from the field of artificial intelligence may also be employed.

Rand does not claim to be the first to arrive at this point of

view. We have, however, reached it completely independently and by a

route that was somewhat surprising to us. We have also tried to docu-

ment the rationale for this point of view better than it has been

documented elsewhere. Although of course not alone, we hope to pursue

this new approach in some detail during the coming months.
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